C riminal incident prediction using a point - pattern - based density model
نویسندگان
چکیده
Law enforcement agencies need crime forecasts to support their tactical operations; namely, predicted crime locations for next week based on data from the previous week. Current practice simply assumes that spatial clusters of crimes or ‘‘hot spots’’ observed in the previous week will persist to the next week. This paper introduces a multivariate prediction model for hot spots that relates the features in an area to the predicted occurrence of crimes through the preference structure of criminals. We use a point-pattern-based transition density model for space–time event prediction that relies on criminal preference discovery as observed in the features chosen for past crimes. The resultant model outperforms the current practices, as demonstrated statistically by an application to breaking and entering incidents in Richmond, VA. 2003 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
منابع مشابه
Surface Tension Prediction of n-Alkanes by a Modified Peng-Robinson Equation of State Using the Density Functional Theory
Through this study, the ability of a modified Peng-Robinson (MPR) equation of state in predicting the surface tension of n-alkanes based on the density functional theory approach was investigated and compared with other studies. The interfacial layer thickness and the density profile were calculated simultaneously at different temperatures from triple point to near critical point using the modi...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملSolubility Prediction of Anthracene in Non-Aqueous Solvent Mixtures Using Jouyban-Acree Model
A quanitative structure property relationship was proposed to calculate the binary interaction terms of the Jouyban-Acree model using solubility parameter, boiling point, vapour pressure and density of solvents. The applicability of the proposed method for reproducing solubility data of anthracene in binary solvents has been evaluated using 116 solubility data sets collected from the lite...
متن کاملAssessment of Landscape Connectivity and Prediction of Migration Corridors for the Baluchistan Black Bear (Ursus thibetanus gedrosianus Blanford, 1877) in the Southeastern Habitats, Iran
The Baluchistan Black Bear (BBB), a critically endangered subspecies (CR), is distributed in the southeastern Iran. Modelling of landscape connectivity of the BBBs among habitat patches can be insightful for the conservation managers working in Iran. Our study was designed to identify the potential corridors among 31 habitat patches of the BBBs in Iran using the circuit theory method. Habitat s...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کامل